Detection and Location of Transverse Matrix Cracks in Cross-Ply Gr/Ep Composites Using Acoustic Emission

نویسندگان

  • W. H. Prosser
  • K. E. Jackson
  • S. Kellas
چکیده

Introduction Transverse matrix cracking in cross-ply gr/ep laminates was studied with advanced acoustic emission (AE) techniques. The primary goal of this research was to measure the load required to initiate the first transverse matrix crack in cross-ply laminates of different thicknesses. Other methods had been previously used for these measurements including penetrant enhanced radiography, optical microscopy, and audible acoustic microphone measurements. The former methods required that the mechanical test be paused for measurements at load intervals. This slowed the test procedure and did not provide the required resolution in load. With acoustic microphones, acoustic signals from cracks could not be clearly differentiated from other noise sources such as grip damage, specimen slippage, or test machine noise. A second goal for this work was to use the high resolution source location accuracy of the advanced acoustic emission techniques to determine whether the crack initiation site was at the specimen edge or in the interior of the specimen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advanced, Waveform Based Acoustic Emission Detection of Matrix Cracking in Composites

An advanced, waveform based acoustic emission (AE) system was used to study the initiation of transverse matrix cracking in cross-ply graphite/epoxy (gr/ep) composites. The AE signals were detected with broad band, high fidelity sensors, and digitized for analysis. Plate wave propagation analysis was used to discriminate noise signals from those generated by cracks. The noise signals were confi...

متن کامل

Multiscale Analysis of Transverse Cracking in Cross-Ply Laminated Beams Using the Layerwise Theory

A finite element model based on the layerwise theory is developed for the analysis of transverse cracking in cross-ply laminated beams. The numerical model is developed using the layerwise theory of Reddy, and the von Kármán type nonlinear strain field is adopted to accommodate the moderately large rotations of the beam. The finite element beam model is verified by comparing the present numeric...

متن کامل

Thermal Conductivity and Expansion of Cross- Ply Composites with Matrix Cracks

Theoretical models are developed for heat conduction and thermal expansion in a fiber-reinforced ceramic cross-ply laminate containing an array of parallel transverse matrix cracks. Two stages of the transverse matrix cracks are considered : Stage-I with tunnel cracks in the 90” plies aligned parallel to the fibers, and Stage-II with cracks extended across both the 90 and 0” plies with intact f...

متن کامل

Comparison of Cyclic Hysteresis Behavior between Cross-Ply C/SiC and SiC/SiC Ceramic-Matrix Composites

In this paper, the comparison of cyclic hysteresis behavior between cross-ply C/SiC and SiC/SiC ceramic-matrix composites (CMCs) has been investigated. The interface slip between fibers and the matrix existed in the matrix cracking mode 3 and mode 5, in which matrix cracking and interface debonding occurred in the 0° plies are considered as the major reason for hysteresis loops of cross-ply CMC...

متن کامل

Acoustic emission monitoring of degradation of cross ply laminates.

The scope of this study is to relate the acoustic activity of damage in composites to the failure mechanisms associated with these materials. Cross ply fiber reinforced composites were subjected to tensile loading with recording of their acoustic activity. Acoustic emission (AE) parameters were employed to monitor the transition of the damage mechanism from transverse cracking (mode I) to delam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007